

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書

CUSTOMER :

(客戶): 志盛翔

DATE: (日期):2017-12-18

CATEGORY (品名)	: ALUMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	: KM 400V68μF(φ18x25)
VERSION (版本)	: 01
Customer P/N	:
SUPPLIER	:

SUPPL	IER	CUS	TOMER
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)
李婷	刘渭清		

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

		SPECIFI			ALT	FERNA R	ATION H ECORDS	ISTORY	
D	D (KM S				D			
Rev.	Date	Mark	Pa	ge	Contents	Purpo	ose	Drafter	Approver
	Vorsion		01					Dago	1
	Version		01					Page	1

	MAN YUE ELECTRONICSELECTROLYTICSAMXONCOMPANY LIMITEDSPECIFICATIONKM SERIES									N			
ab	le 1 Product Dimen	sions a	nd Ch	aracteristic	2.S								
	Safety vent for $\geq \phi 6$ $L^{+\alpha}_{-1,0}$.3	nin 4	↓ d±0.05	-	ΦD ^{+β}	5		_<20 : α=1.5 ΦD<20 : β			B=1.0	
											Un	it: mm	
N D.	SAMXON Part No.	WV (Vdc)	Cap. (µF)	Cap. tolerance	Temp. range(°C)	tanδ (120Hz,	Leakage Current	Max Ripple Current at 105°C 120Hz	Load lifetime		nension (mm)		Sleeve
1	EKM686M2GL25RR**P1	400	68	-20%~+20%	-25~105	20°C) 0.24	(μA,2min) 856	(mA rms) 390	(Hrs) 2000	D×L 18X25	F 7.5	фd 0.8	PET
											1	1	

Version 01 Page 2

C O N T E N T S	
	Sheet
. Application	4
. Part Number System	4
. Construction	5
. Characteristics	5~10
.1 Rated voltage & Surge voltage	
2. Capacitance (Tolerance)	
.3 Leakage current	
$.4 \tan \delta$	
4.5 Terminal strength	
.6 Temperature characteristic	
Load life test	
4.8 Shelf life test	
4.9 Surge test	
4.10 Vibration	
4.11 Solderability test	
4.12 Resistance to solder heat	
4.13 Change of temperature 4.14 Damp heat test	
4.15 Vent test	
1.16 Maximum permissible (ripple current)	
. List of "Environment-related Substances to be Controlled ('Controlled Substances')"	11
Attachment: Application Guidelines	12~15

	ſ	Version	01			3
--	---	---------	----	--	--	---

ELECTROLYTIC CAPACITOR **SPECIFICATION** KM SERIES

SAMXON

1. Application

This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

Part Number System 2.

12	3 4	5 6	5] [7		89	[10 11 12	2 131	14	1516	17
E G SERIES	<u>5 1</u>			<u> </u>			D 1 1 CASE SIZE		<u>C</u>	SA	P
SERIES	CAPA			L.	VOLIAGE		CASE SIZE			SAMXON PRODUCT LINE	
Series ESM	Cap(MFD)	Code	Tolerance (%)	Code	Voltage (W.V.) 2	Code 0D	Case Size	Feature (Code	SAMXON Product	
EKF	0.1	104	±5	J	2.5	0D	3 B	Radial bulk	RR	For internal use on (The product lines	-
EKS	0.22	224	. 10		6.3	0G 0J	3.5 1 4 C 5 D	Ammo Tap	ing	we have H,A,B,C,D	
EKM EKG	0.33	334	±10	к	8	0K	6.3 E 8 F	2.0mm Pitch	TT	E,M or 0,1,2,3,4,5,	9).
EOM EZM			±15	L	10	1A 1B	10 G 12.5 I			L	
EZS EGF	0.47	474			16	10	13 J 13.5 V	2.5mm Pitch	ΤU		
ESF EGT	1	105	±20	м	20 25	1D 1E	14 4 14.5 A	3.5mm Pitch	ТV	Sleeve Material	Code
EGK	2.2	225	±30	N	30	11	16 K 16.5 7 18 L	5.0mm Pitch	тс	PET	P
EGD EGC ERS		005			32	13 1V	18.5 8 20 M	Lead Cut &	Form		
ERF	3.3	335	-40 0	w	40	1G	22 N 25 O			PVC	Ē
ERR	4.7	475	-20 0	A	42 50	1M 1H	18.5 8 20 M 22 N 25 O 30 P 34 W 35 Q	СВ-Туре	СВ		e slee
ERE	10	106			57	1L	1 40 K	CE-Type	CE		the sleeve material is PVC, there will be blank in seventeenth digit
ERH	22	226	-20 +10	c	63 71	1J 1S	42 4 45 6	HE-Type	HE		lateri
ERA ERB			-20 +40	x	75	1 T	63.5 T	KD-Type	кD		al is
ERC EFA	33	336	-20		80	1K 1R	76 U 80 8 90 X				VC,
ENP ENH	47	476	+50	S	90	19	90 X 100 Z Lenu(mm) Code	FD-Type	FD		there
ERW	100	107	-10 0	в	100 120	2A 20	4.5 45 5 05	EH-Type	EH		Will
ELP EAP EQP	220	227	-10	- V	125	2B	5.4 54 7 07	PCB Term	nial		be bla
EDP ETP	220	221	+20	v	150 160	2Z 2C	7.7 77 10.2 T2		sw		≞,
EHP	330	337	-10 +30	Q	180	2P	11 11 11.5 1A				1 Seve
EKP	470	477	-10	т	200 215	2D 22	12 12 12.5 1B 13 13	Snap-in	sx		antee
EFP ESP	2200	228	+50		220 230	2N 23	13.5 1C		sz		nth d
EVP EGP	20202		+10	E	250	23 2E	20 20 25 25 29.5 2J	Lug	SG		igit.
EWR	22000	229	-5 +15	F	275 300	2T 2I	30 30		05		
EWT	33000	339	-5 +20	G	310	2R	35.5 3E				
EWF EWS EWH	47000	479	+20		315 330	2F 2U	50 50 80 80		06		
EWL	100000	10T	+20	R	350	2V	100 1L 105 1K	Parrow	Т5		
VSS VNS			0 +30	0	360 375	2X 2Q	110 1M 120 1N 130 1P	Screw	т6		
VKS	150000	15T	0 +50	1	385	2Y	140 1Q 150 1R		D5		
VRL VNH	220000	22T	+5	z	400 420	2G 2M	155 1E 160 1S				
VZS VRF	330000	33Т	+15		450	2W	165 1F 170 1T 180 1U		D6		
	1000000	10M	+20	D	500 550	2H 25	180 1U 190 1V				
			+10 +50	Y	600	26	200 2L 215 2A				
	1500000	15M	+10 +30	н	630	2J	180 10 190 1V 200 2L 215 2A 210 2M 220 2N 240 2Q 250 2R				
	2200000	22M			I		250 2R 260 2S				
	3300000	33M					260 2S 270 2T				

01

4

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	РЕТ
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version	01		5
		U	

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

	ITEM				PE	RFOR	MANC	E					
	Rated voltage	WV (V.DC) 6.3 10 16 25 35 50									100		
	(WV)	SV (V.DC)	8	13		20	32	44	63	79	125		
4.1													
	Surge	WV (V.DC)	160	200	220	250	350	400	420	450			
	voltage (SV)	SV (V.DC)	200	250	270	300	400	450	470	500			
4.2	Nominal capacitance (Tolerance)	<condition> Measuring F Measuring V Measuring T <criteria> Shall be with</criteria></condition>	requend oltage `empera	: uture :	Not n 20 ± 2	°C	an 0.5V1						
4.3	Leakage current	 <condition></condition> Connecting the capacitor with a protective resistor (1k Ω ± 10 Ω) in series minutes, and then, measure Leakage Current. <criteria></criteria> Refer to Table 1 									eries for 2		
4.4	tan δ	See 4.2, Nor < Criteria >	Condition> See 4.2, Norm Capacitance, for measuring frequency, voltage and temperatu Criteria> Refer to Table 1										
		Condition> Tensile Str Fixed the or seconds. Bending Str Fixed the or 90° within 2 seconds.	ength o capacito rength c apacitor 2~3 sec	or, appli of Term , applie onds, au	ed for inals. d force nd the	to ben	t the ter	minal (1 ° to its	~4 mm original	from the	rubber) fo		
4.5	Terminal atmosphere:	Diamet	er of le	ad wire			gf)	`		g force iv (gf)			
	strength		nm and				0.51)			(0.25)			
		Over 0.	5mm to	0.8mm	ı	10	(1.0)		5 (0	0.51)			
		<criteri< b=""> No notic</criteri<>		hanges	shall ł	e foun	d, no bro	eakage (or loose	ness at the	e terminal.		

Version	01		Page	6
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

		<condition></condition>	T (*	т	(%)	1		т.		
		STEP	Testi		rature(°C)			Time		
		1		20 ± 2				thermal e	-	
			2 $-40(-25) \pm 3$ Time to reach thermal equilib						•	
		3		20 ± 2		-		thermal e	*	
		4		105±				thermal e	•	
		5		20 ± 2	2	Time	to read	h thermal e	equilibriu	m
		<criteria></criteria>				4 4 75 1 1				
		a. $\tan \delta$ shall				4.4The l	eakage	current me	asured sl	nall not
	Temperature	more than 8 tin		-		:4 . C 14.	. 4 47	1 1 1		.h.a.11
	characteristi	b. In step 5, t more than the			nin the lin	it of iter	n 4.41	пе теакаде	current	snall not
4.6	cs	c. At-40°C (-2	-		(z) ratio	hall not	evceed	the value of	of the fol	lowing
		table.	23 C), II	inpedance	(Z) 1410 3	nan not	CACCCU			lowing
		Working Volta	ge (V)	6.3	10	16	25	35	50	63
		Z-25°C/Z+2	0°C	5	4	3	2	2	2	2
		Z-40°C/Z+2	0°C	10	8	6	4	3	3	3
		Working Voltag	ge (V)	100	160~220	250-	-350	400~420	450	
		Z-25°C/Z+2		2	3		1	6	15	
		Z-40°C/Z+20		3		_	-			
		For capacitanc	1	. 1000		-	1 1/		7 25/7 1	\mathbf{n}°
			e value	$> 1000 \mu$	F. Add 0.3	b per and	ther I	$100 \ \mu$ F for	L-23/L+.	20 C.
		1 of equiviliance	e value	μ 0001 <		-		00 µ F for 00 µ F for 2		
		Capacitance, ta			Add 1.0	per ano	ther 10	00 µ F for 2		
		-			Add 1.0	per ano	ther 10	00 µ F for 2		
		Capacitance, ta	n ^δ , an	d impedar	Add 1.0 nce shall b	per ano e measur	ther 10 ed at 1	00 µ F for 2 20Hz.	Z-40°C/Z	Z+20℃.
		Capacitance, ta <condition> According to I 105°C ±2 with</condition>	n ^δ , an EC6038 h DC bi	d impedar 34-4No.4. as voltage	Add 1.0 nce shall b 13 method e plus the r	s, The ca	ther 10 red at 1 apacito le curr	00 µ F for 2 20Hz. r is stored a ent for Tab	Z-40°C/Z t a tempe le 1. (Th	erature of the sum of
		Capacitance, ta Condition> According to I 105°C ±2 witt DC and ripple	n δ , and EC6038 h DC bi	d impedar 34-4No.4. as voltage voltage sł	Add 1.0 nce shall b 13 method e plus the r nall not ex	s, The ca ated ripp	ther 10 red at 1 apacito le curr e rated	00 µ F for 2 20Hz. r is stored a ent for Tab working v	z-40°C/Z t a tempe le 1. (Th voltage)	erature o ne sum o Then the
		Capacitance, ta: <condition> According to I 105°C ±2 with DC and ripple product should</condition>	n^{δ} , and EC6038 h DC bi e peak	d impedar 34-4No.4. as voltage voltage sh ed after 16	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours rec	s, The ca ated ripp	ther 10 red at 1 apacito le curr e rated	00 µ F for 2 20Hz. r is stored a ent for Tab working v	z-40°C/Z t a tempe le 1. (Th voltage)	erature o ne sum o Then the
	Load	Capacitance, tat <condition> According to I 105°C ±2 witt DC and ripple product should result should n</condition>	n^{δ} , and EC6038 h DC bi e peak	d impedar 34-4No.4. as voltage voltage sh ed after 16	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours rec	s, The ca ated ripp	ther 10 red at 1 apacito le curr e rated	00 µ F for 2 20Hz. r is stored a ent for Tab working v	z-40°C/Z t a tempe le 1. (Th voltage)	erature o ne sum o Then the
4.7	life	Capacitance, tat <condition> According to I 105°C ±2 with DC and ripple product should result should n <criteria></criteria></condition>	$n \delta$, and EC6038 h DC bi e peak l be test neet the	d impedar 34-4No.4. as voltage voltage sh ed after 16 following	Add 1.0 nee shall b 13 method e plus the r hall not ex 6 hours rec g table:	s, The ca ated ripp cceed the	ther 10 red at 1 apacito le curr e rated time at	00 µ F for 2 20Hz. r is stored a ent for Tab working v atmospher	z-40°C/Z t a tempe le 1. (Th voltage)	erature o ne sum o Then the
4.7		Capacitance, tat <condition> According to I 105°C ±2 with DC and ripple product should result should n <criteria> The characteri</criteria></condition>	$n \delta$, and EC6038 h DC bite peak l be testineet the	d impedar 34-4No.4. as voltage voltage sh ed after 16 following <u>ll meet th</u>	Add 1.0 nee shall b 13 method e plus the r nall not ex 6 hours rec g table: e followin	s, The ca ated ripp cceed the overing	ther 10 red at 1 apacito le curr e rated time at	00 µ F for 2 20Hz. r is stored a ent for Tab working v atmospher	z-40°C/Z t a tempe le 1. (Th voltage)	erature o ne sum o Then the
4.7	life	Capacitance, tat <condition> According to I 105°C ± 2 witt DC and ripple product should result should n <criteria> The characteri Leakage</criteria></condition>	n δ , and EC6038 h DC bi e peak l be test neet the stic sha e curren	d impedar 34-4No.4. as voltage voltage sh ed after 16 following 11 meet the t	Add 1.0 nce shall b 13 method e plus the r nall not ex 5 hours rec g table: e followin Value in	per ano e measures, The ca ated ripp acceed the overing g requires 4.3 shall	ther 10 red at 1 apacito le curr e rated time at ements. be sati	00 µ F for 2 20Hz. r is stored a ent for Tab working v atmospher	z-40°C/Z t a tempe le 1. (Th voltage)	erature o ne sum o Then the
4.7	life	Capacitance, tat <condition> According to I $105^{\circ}C \pm 2$ with DC and ripple product should result should n <criteria> The characterit Leakage Capacit</criteria></condition>	n δ , and EC6038 h DC bi e peak l be test neet the stic sha e curren	d impedar 34-4No.4. as voltage voltage sh ed after 16 following 11 meet the t	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within ±	s, The ca ated ripp ceed the overing <u>g require</u> 4.3 shall 20% of	ther 10 red at 1 apacito le curr e rated time at ements. be sati	00 µ F for 2 20Hz. r is stored a ent for Tab working v atmospher sfied value.	Z-40°C/Z t a tempe le 1. (Th voltage) ' ic conditi	erature o ne sum o Then the
4.7	life	Capacitance, tax <condition> According to I 105°C ± 2 with DC and ripple product should result should n <criteria> The characterit Leakage Capacit tan δ</criteria></condition>	n δ , and EC6038 h DC bi e peak δ l be test neet the estic sha e curren ance Ch	d impedar 34-4No.4. as voltage voltage sh ed after 16 following 11 meet the t	Add 1.0 nce shall b 13 method e plus the r nall not ex 5 hours rec g table: e followin Value in Within <u>±</u> Not more	per ano e measures, The ca ated ripp acceed the overing g required 4.3 shall 20% of than 20	ther 10 red at 1 apacito le curr e rated time at <u>ements</u> . <u>be sati</u> <u>initial</u>	00 µ F for 2 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specifie	Z-40°C/Z t a tempe le 1. (Th voltage) ' ic conditi d value.	erature o ne sum o Then the
4.7	life	Capacitance, tat <condition> According to I $105^{\circ}C \pm 2$ with DC and ripple product should result should n <criteria> The characterit Leakage Capacit</criteria></condition>	n δ , and EC6038 h DC bi e peak δ l be test neet the estic sha e curren ance Ch	d impedar 34-4No.4. as voltage voltage sh ed after 16 following 11 meet the t	Add 1.0 nce shall b 13 method e plus the r nall not ex 5 hours rec g table: e followin Value in Within <u>±</u> Not more	per ano e measures, The ca ated ripp acceed the overing g required 4.3 shall 20% of than 20	ther 10 red at 1 apacito le curr e rated time at <u>ements</u> . <u>be sati</u> <u>initial</u>	00 µ F for 2 20Hz. r is stored a ent for Tab working v atmospher sfied value.	Z-40°C/Z t a tempe le 1. (Th voltage) ' ic conditi d value.	erature o ne sum o Then the
4.7	life	Capacitance, tax <condition> According to I $105^{\circ}C \pm 2$ with DC and ripple product should result should n <criteria> The characterit Leakage Capacitt tan δ Appeara</criteria></condition>	n δ , and EC6038 h DC bi e peak δ l be test neet the estic sha e curren ance Ch	d impedar 34-4No.4. as voltage voltage sh ed after 16 following 11 meet the t	Add 1.0 nce shall b 13 method e plus the r nall not ex 5 hours rec g table: e followin Value in Within <u>±</u> Not more	per ano e measures, The ca ated ripp acceed the overing g required 4.3 shall 20% of than 20	ther 10 red at 1 apacito le curr e rated time at <u>ements</u> . <u>be sati</u> <u>initial</u>	00 µ F for 2 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specifie	Z-40°C/Z t a tempe le 1. (Th voltage) ' ic conditi d value.	erature o ne sum o Then the
4.7	life	Capacitance, tax <condition> According to II 105°C ± 2 with DC and ripple product should n <criteria> The characterit Leakage Capacit tan δ Appeara</criteria></condition>	$n \delta$, and EC6038 h DC bi e peak v l be test heet the astic sha ance Ch ance	d impedar 34-4No.4. as voltage voltage sh ed after 16 following Il meet the t nange	Add 1.0 nee shall b 13 method e plus the r nall not ex 6 hours rec g table: e followin Value in Within <u>±</u> Not more There sha	s, The ca ated ripp acceed the overing g require 4.3 shall 20% of than 20 all be no	ther 10 red at 1 apacito le curr e rated time at ments. be sati initial 0% of leakag	00 µ F for 2 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specifie e of electro	z-40°C/Z t a tempe le 1. (Th voltage) ' ic conditi d value. lyte.	r+20℃. erature of the sum o Then the ions. The
4.7	life	Capacitance, tax <condition> According to I $105^{\circ}C \pm 2$ with DC and ripple product should result should n <criteria> The characterit Leakage Capacitt tan δ Appeara</criteria></condition>	n δ , and EC6038 h DC bi e peak the l be testineet the astic sha ance Ch ance	d impedar 34-4No.4. as voltage voltage sh ed after 16 following 11 meet that thange stored wi	Add 1.0 nce shall b 13 method e plus the r nall not ex 5 hours rec g table: e followin Value in Within <u>±</u> Not more There sha	s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall 20% of than 20 all be no	ther 10 red at 1 apacito le curr e rated time at <u>be sati</u> initial 0% of leakag	00 µ F for 2 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specifie e of electro temperatur	z-40°C/Z t a tempe le 1. (Th voltage) ' ic conditi d value. lyte. e of 105 :	$\pm 2^{\circ}$ C. erature of the sum of Then the ions. The ± 2°C for
4.7	life test	Capacitance, tax <condition> According to I $105^{\circ}C \pm 2$ with DC and ripple product should result should n <criteria> The characterit Leakage Capacitt tan δ Appeara <condition> The capacitors a 1000+48/0 how chamber and b</condition></criteria></condition>	n δ , and EC6038 h DC bi e peak v l be testi- neet the astic sha e curren ance Cl ance are then urs. Follow a allow	d impedar 34-4No.4. as voltage voltage sh ed after 16 following 11 meet the to tange stored wi lowing thi yed to stal	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: <u>e followin</u> Value in Within <u>±</u> Not more There sha th no volta is period th bilized at	s, The ca ated ripp acceed the overing <u>g required</u> 4.3 shall 20% of than 20 all be no age appline capac room ter	ther 10 red at 1 apacito le curr e rated time at <u>ements.</u> be sati initial 0% of leakag ed at a itors sh aperatu	00 µ F for 2 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specifie e of electro temperatur nall be remo	z-40°C/Z t a tempe le 1. (Th voltage) ' ic conditi d value. lyte. e of 105 : oved fror hours. N	$\pm 2^{\circ}$ ℃. erature of the sum of Then the the tors. The the the tors. The the tess Jext they
	life test Shelf	Capacitance, tax <condition> According to II 105°C ± 2 with DC and ripple product should n <criteria> The characterint Leakage Capacit tan δ Appeara <condition> The capacitors a 1000+48/0 hou chamber and b shall be conne</condition></criteria></condition>	$n \delta$, and EC6038 h DC bi e peak v l be test neet the astic sha e curren ance Ch ance Ch ance ance che are then urs. Follower extend to	d impedar 34-4No.4. as voltage voltage sh ed after 16 following Il meet the t nange stored wi lowing thi yed to stal a series	Add 1.0 nee shall b 13 method e plus the r nall not ex 5 hours rec 5 table: e followin Value in Within <u>+</u> Not more There sha th no volta is period th bilized at limiting re	s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall 20% of than 20 all be no age appli accom ter esistor(11	ther 10 red at 1 apacito le curr e rated time at <u>e rated</u> time at <u>initial</u> 0% of leakag ed at a itors sh aperatu $x \pm 100$	$00 \ \mu$ F for 2 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specifie e of electro temperatur all be remo ure for 4~8 Ω) with E	z-40°C/Z t a tempe le 1. (Th voltage) ' ic conditi d value. lyte. e of 105 : oved from hours. N D.C. rated	$\pm 2^{\circ}$ C for normalized for the tess the tess of the tess best they d voltage
4.7	life test Shelf life	Capacitance, tax <condition> According to II 105°C ± 2 with DC and ripple product should n <criteria> The characterit Leakage Capacit tan δ Appeara <condition> The capacitors a 1000+48/0 hou chamber and b shall be conner applied for 30t</condition></criteria></condition>	n δ , and EC6038 h DC bi e peak the l be testineet the astic sha e curren ance Ch ance are then urs. Follow e allow ected to min. Af	d impedar 34-4No.4. as voltage voltage sh ed after 16 following Il meet the t nange stored wi lowing thi yed to stal a series	Add 1.0 nee shall b 13 method e plus the r nall not ex 5 hours rec 5 table: e followin Value in Within <u>+</u> Not more There sha th no volta is period th bilized at limiting re	s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall 20% of than 20 all be no age appli accom ter esistor(11	ther 10 red at 1 apacito le curr e rated time at <u>e rated</u> time at <u>initial</u> 0% of leakag ed at a itors sh aperatu $x \pm 100$	$00 \ \mu$ F for 2 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specifie e of electro temperatur all be remo ure for 4~8 Ω) with E	z-40°C/Z t a tempe le 1. (Th voltage) ' ic conditi d value. lyte. e of 105 : oved from hours. N D.C. rated	$\pm 2^{\circ}$ C for normalized for the tess the tess of the tess best they d voltage
	life test Shelf	Capacitance, tax <condition> According to II 105°C ± 2 with DC and ripple product should n <criteria> The characterint Leakage Capacit tan δ Appeara <condition> The capacitors a 1000+48/0 hou chamber and b shall be conne</condition></criteria></condition>	n δ , and EC6038 h DC bi e peak the l be testineet the astic sha e curren ance Ch ance are then urs. Follow e allow ected to min. Af	d impedar 34-4No.4. as voltage voltage sh ed after 16 following Il meet the t nange stored wi lowing thi yed to stal a series	Add 1.0 nee shall b 13 method e plus the r nall not ex 5 hours rec 5 table: e followin Value in Within <u>+</u> Not more There sha th no volta is period th bilized at limiting re	s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall 20% of than 20 all be no age appli accom ter esistor(11	ther 10 red at 1 apacito le curr e rated time at <u>e rated</u> time at <u>initial</u> 0% of leakag ed at a itors sh aperatu $x \pm 100$	$00 \ \mu$ F for 2 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specifie e of electro temperatur all be remo ure for 4~8 Ω) with E	z-40°C/Z t a tempe le 1. (Th voltage) ' ic conditi d value. lyte. e of 105 : oved from hours. N D.C. rated	$\pm 2^{\circ}$ C for normalized for the tess the tess of the tess best they d voltage
	life test Shelf life	Capacitance, tax <condition> According to II 105°C ± 2 with DC and ripple product should n <criteria> The characterit Leakage Capacit tan δ Appeara <condition> The capacitors a 1000+48/0 hou chamber and b shall be conner applied for 30t</condition></criteria></condition>	n δ , and EC6038 h DC bi e peak the l be testineet the astic sha e curren ance Ch ance are then urs. Follow e allow ected to min. Af	d impedar 34-4No.4. as voltage voltage sh ed after 16 following Il meet the t nange stored wi lowing thi yed to stal a series	Add 1.0 nee shall b 13 method e plus the r nall not ex 5 hours rec 5 table: e followin Value in Within <u>+</u> Not more There sha th no volta is period th bilized at limiting re	s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall 20% of than 20 all be no age appli accom ter esistor(11	ther 10 red at 1 apacito le curr e rated time at <u>ements</u> . <u>be sati</u> <u>initial</u> <u>0% of</u> <u>leakag</u> ed at a itors sh aperatu $x \pm 100$	$00 \ \mu$ F for 2 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specifie e of electro temperatur all be remo ure for 4~8 Ω) with E	z-40°C/Z t a tempe le 1. (Th voltage) ' ic conditi d value. lyte. e of 105 : oved from hours. N D.C. rated	$\pm 2^{\circ}$ C for normalized for the tess the tess of the tess best they d voltage
	life test Shelf life	Capacitance, tax <condition> According to II 105°C ± 2 with DC and ripple product should n <criteria> The characterit Leakage Capacit tan δ Appeara <condition> The capacitors a 1000+48/0 hou chamber and b shall be conner applied for 30t</condition></criteria></condition>	n δ , and EC6038 h DC bi e peak the l be testineet the astic sha e curren ance Ch ance are then urs. Follow e allow ected to min. Af	d impedar 34-4No.4. as voltage voltage sh ed after 16 following Il meet the t nange stored wi lowing thi yed to stal a series	Add 1.0 nee shall b 13 method e plus the r nall not ex 5 hours rec 5 table: e followin Value in Within <u>+</u> Not more There sha th no volta is period th bilized at limiting re	s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall 20% of than 20 all be no age appli accom ter esistor(11	ther 10 red at 1 apacito le curr e rated time at <u>ements</u> . <u>be sati</u> <u>initial</u> <u>0% of</u> <u>leakag</u> ed at a itors sh aperatu $x \pm 100$	$00 \ \mu$ F for 2 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specifie e of electro temperatur all be remo ure for 4~8 Ω) with E	z-40°C/Z t a tempe le 1. (Th voltage) ' ic conditi d value. lyte. e of 105 : oved from hours. N D.C. rated	$\pm 2^{\circ}$ C for normalized for the tess the tess of the tess best they d voltage

Version	01	Page	7

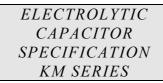
		<criteria></criteria>	
		The characteristic shall meet	
	<u>61.16</u>	Leakage current	Value in 4.3 shall be satisfied
4.8	Shelf life	Capacitance Change	Within $\pm 20\%$ of initial value.
4.8	test	tan δ	Not more than 200% of the specified value.
	lest	Appearance	There shall be no leakage of electrolyte.
			stored more than 1 year, the leakage current may
		increase. Please apply voltage	e through about 1 k Ω resistor, if necessary.
		<condition></condition>	
			e capacitor connected with a $(100 \pm 50)/C_R$ (k Ω) resistor.
			ted to 1000 cycles, each consisting of charge of $30 \pm 5s$,
		followed discharge of 5 min	
		The test temperature shall b	
		C _R :Nominal Capacitance (1 <criteria></criteria>	1 F)
4.9	Surge		Not more than the specified value
ч.)	test	Leakage current	Not more than the specified value.
		Capacitance Change	Within $\pm 15\%$ of initial value.
		tan δ	Not more than the specified value.
		Appearance	There shall be no leakage of electrolyte.
		Attention:	
		over voltage as often applied	ge at abnormal situation only. It is not applicable to such
			Il be applied for 2 hours in each 3 mutually
		perpendicular directions.	
		Vibration frequency ra	-
		Peak to peak amplitude	
		Sweep rate Mounting method:	: $10Hz \sim 55Hz \sim 10Hz$ in about 1 minute
			reater than 12.5mm or longer than 25mm must be fixed
		in place with a bracket.	reater than 12.5 mill of fonger than 25 mill must be fixed
		r	
			Within 30°
		4mm or less	s /
	T T 1		
4.10	Vibration	<	
4.10	Vibration test		
4.10			
4.10			
4.10			
4.10			To be soldered
4.10		<criteria></criteria>	To be soldered
4.10		<criteria> After the test, the following i</criteria>	
4.10		After the test, the following i	
4.10		After the test, the following i	tems shall be tested:
4.10		After the test, the following i	tems shall be tested: No intermittent contacts, open or short circuiting. No damage of tab terminals or electrodes. No mechanical damage in terminal. No leakage
4.10		After the test, the following i Inner construction	tems shall be tested: No intermittent contacts, open or short circuiting. No damage of tab terminals or electrodes.

Version	01	Page	8

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

	г	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					1
		<condition></condition>	. 1 1 .1	C 11 ·	1		
		The capacitor shall be tes	ted under th	-	condition	S:	
		Soldering temperature		: 245±3°C			
	Solderability	Dipping depth		: 2mm	1		
4.11	test	Dipping speed		: 25±2.5mm	/S		
	iest	Dipping time		: 3±0.5s			
		<criteria></criteria>		A		- <u>-</u>	hairea
		Coating quality		immersed	10193%	of the surface	being
				minerseu			
		<condition></condition>					
		Terminals of the capacitor	r shall be ii	nmersed into	o solder l	bath at $260\pm$	$5^{\circ}C$ for $10\pm$
		1 seconds or $400 \pm 10^{\circ}$ C fo	$r3^{+1}_{-0}$ second	ds to 1.5~2.01	mm from	the body of c	capacitor.
		Then the capacitor shall b	be left under	the normal t	emperatu	ire and norma	l humidity
	Resistance to	for 1~2 hours before mea			1		5
4.12	solder heat	<c<u>riteria></c<u>					
	test	Leakage current	Not	t more than th	ne specifi	ied value.	
		Capacitance Change	Wit	thin $\pm 10\%$ o	of initial	value.	
		$\tan \delta$		t more than th	ne specifi	ed value.	
		Appearance	The	ere shall be no	o leakage	e of electrolyt	e.
					0	5	
		<condition></condition>			4 7 1	1 .	1 11 1
		Temperature Cycle:Accor	•			ods, capacitor	shall be
		placed in an oven, the con		rding as belo		ime	
			emperature				
		(1)+20°C	(10%		≤3	Minutes	
	Change of	(2)Rated low temper	`		30 ± 2	Minutes	
4.13	temperature	(3)Rated high temper	rature (+105	S℃)	30 ± 2	Minutes	
	test	(1) to (3)=1 cycle, to	tal 5 cycle				
		<criteria></criteria>					
		The characteristic shall m					,
		Leakage current		ore than the s	•		
		tan δ	Not mo	ore than the sp	pecified	value.	
		Appearance	There s	shall be no lea	akage of	electrolyte.	
		<condition></condition>					
		Humidity Test:					
		According to IEC60384-4					
		hours in an atmosphere of		H .at $40\pm2^\circ$	C, the ch	aracteristic cl	nange shall
		meet the following requir	ement.				
		<criteria></criteria>	1 3 T .				
4.14	Damp heat	Leakage current		than the spec		ue.	
	test	Capacitance Change		20% of initia			
		tan δ		than 120% o			
		Appearance	There sha	ll be no leaka	ige of ele	ectrolyte.	


X 7	•
Ve	rsion
· • •	101011

01

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

22.4 or less 1 Over 22.4 10 The vent shall operate with no dangerous conditions such as pieces of the capacitor and/or case.	C curre	ent
The maximum permissible ripple current is the maximum A at 120Hz and can be applied at maximum operating temper Table-1 The combined value of D.C voltage and the peak A.C volta rated voltage and shall not reverse voltage. Frequency Multipliers:	ature	
Rated VoltageCoefficientFreq. (Hz)50120300	1k	not exceed
4.16 Maximum permissible (ripple current) (V) Cap.(μ F) 120 120 100 1.35 $6.3\sim100$ $68\sim470$ 0.80 1.00 1.23 ≥ 560 0.85 1.00 1.10 $0.47\sim220$ 0.80 1.00 1.25	1.57 1.34 1.13 1.40	2.00 1.50 1.15 1.60
160~450 0.11/220 0.00 1.00 1.12 ≥270 0.90 1.00 1.10	1.13	1.15

Version 01 Page 10	
--------------------	--

SAMXON

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances
	Cadmium and cadmium compounds
Heavy metals	Lead and lead compounds
ficavy metals	Mercury and mercury compounds
	Hexavalent chromium compounds
	Polychlorinated biphenyls (PCB)
Chloinated	Polychlorinated naphthalenes (PCN)
organic	Polychlorinated terphenyls (PCT)
compounds	Short-chain chlorinated paraffins(SCCP)
	Other chlorinated organic compounds
Durania stad	Polybrominated biphenyls (PBB)
Brominated	Polybrominated diphenylethers(PBDE) (including
organic	decabromodiphenyl ether[DecaBDE])
compounds	Other brominated organic compounds
Tributyltin comp	oounds(TBT)
Triphenyltin com	npounds(TPT)
Asbestos	
Specific azo com	npounds
Formaldehyde	
Beryllium oxide	
Beryllium copp	er
Specific phthalat	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)
Perfluorooctane	sulfonates (PFOS)
Specific Benzotr	iazole

Version	01		Page	11
---------	----	--	------	----

SAMXON

Attachment: Application Guidelines

1.Circuit Design

- 1.1 Operating Temperature and Frequency Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters
 - a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while $tan\delta$ increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy See the file: Life calculation of aluminum electrolytic capacitor
- 1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

- 1.5 Capacitor Mounting Considerations
- (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

- (5) Clearance for Seal Mounted Pressure Relief Vents
 - A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version	01		Page	12
---------	----	--	------	----

SAMXON

 (6) Wiring Near the Pressure Relief Vent Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite. (7) Circuit Board patterns Under the Capacitor
Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short.
(8) Screw Terminal Capacitor Mounting
Do not orient the capacitor with the screw terminal side of the capacitor facing downwards. Tighten the terminal and mounting bracket screws within the torque range specified in the specification.
1.6 Electrical Isolation of the Capacitor Completely isolate the capacitor as follows.
 Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
1.7 The Product endurance should take the sample as the standard.
1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.
1.9 Capacitor Sleeve The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor.
The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.
CAUTION! Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use.
(1) Provide protection circuits and protection devices to allow safe failure modes.(2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.
2. Capacitor Handling Techniques
 2.1 Considerations Before Using (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.
(2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged
 with a resistor with a value of about 1kΩ. (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying
rated voltage in series with a resistor of approximately $1k\Omega$. (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
 (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result.
2.2 Capacitor Insertion
 Verify the correct capacitance and rated voltage of the capacitor. Verify the correct polarity of the capacitor before inserting.
(3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.(4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the
capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.
2.3 Manual Soldering
(1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 $^{\circ}$ C for 3 seconds or less. 2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.
2.4 Flow Soldering
 Do not immerse the capacitor body into the solder bath as excessive internal pressure could result. Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits. Do not allow other parts or components to touch the capacitor during soldering.
2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150° for a maximum time of 2 minutes.

Version	01		Page	13
---------	----	--	------	----

- 2.6 Capacitor Handling after Solder
- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning
- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- : could attack and dissolve the aluminum case. Alkali solvents
- Petroleum based solvents: deterioration of the rubber seal could result. Xylene
 - : deterioration of the rubber seal could result.
- : removal of the ink markings on the vinyl sleeve could result. Acetone
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

- Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100° C temperatures.
- If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.
 - If electrolyte or gas is ingested by month, gargle with water.
 - If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes. If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

Version 0	01	Page	14
-----------	----	------	----

The capacitor shall be not use in the following condition:

(1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.

(2) Direct contact with water, salt water, or oil.

(3) High humidity conditions where water could condense on the capacitor.

(4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.

(5) Exposure to ozone, radiation, or ultraviolet rays.

(6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise).

Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Version 01 Page 15
